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cluster graph convolutional network 

Lu Meng *, Qianqian Zhang 
College of Information Science and Engineering, Northeastern University, China   

A R T I C L E  I N F O   

Keywords: 
Graph convolution neural network 
Multi-modal 
Feature extraction 
Adjacency matrix 
ADNI dataset 

A B S T R A C T   

Objective: Mild Cognitive Impairment (MCI) is an early stage of Alzheimer’s Disease (AD), often mistaken for 
natural aging. Early detection and treatment of MCI are crucial for effective treatment, but the condition can be 
difficult to diagnose. In recent years, multi-modal data and deep learning methods have shown promise in this 
field. The objective of this study is to develop a computer-aided MCI diagnosis system that effectively processes 
multi-modal data using deep learning methods. 
Method: We proposed a Dual Fusion Cluster Graph Convolution Network (DFCGCN) model, which combines two 
channels of feature extraction, one adjacency matrix, and the Cluster GCN in series. Brain imaging is down-
sampled using graph pooling and flattened into sparse vectors, from which advanced features are extracted. 
Similarity between connectivity matrices is calculated using the Gaussian kernel function and combined with 
non-imaging details to construct a population graph that better represents inter-subject variability. Finally, 
features are assigned to subjects in the population graph, and node embeddings are learned using Cluster GCN to 
output diagnostic results. 
Result: We tested the proposed algorithm on the public Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset, achieving an accuracy, sensitivity, and specificity of 90.7%, 91.1%, and 94.0%, respectively. 
Conclusion: The DFCGCN model presented in this study enhances the diagnosis of MCI and outperforms other 
state-of-the-art algorithms. This approach has potential to be a valuable tool for early detection and treatment of 
MCI.   

1. Introduction 

Alzheimer’s Disease (AD) is a devastating and progressive neurode-
generative condition that has a profound impact on individuals and 
society at large. According to the International Alzheimer’s Association, 
the number of individuals affected by AD worldwide is expected to reach 
131.5 million by 2050. Given the significant personal and societal 
burden associated with this condition, early and accurate diagnosis, as 
well as effective treatment, are of critical importance. Therefore, 
research efforts aimed at developing innovative approaches for early 
detection and intervention are of great significance in the fight against 
AD. 

Computer-aided diagnosis has been extensively studied to achieve 
timely and accurate detection and treatment of AD. However, some 
studies have focused on single-modal diagnosis. In this regard, Kanghan 
et al. [1] used a total of 694 structural MRI scans and proposed a 
volumetric convolutional neural network model for the pairwise 

classification of AD, MCI, and NC in four stages. The gradient visuali-
zation method was employed to study biomarker information related to 
progressive mild cognitive impairment (PMCI) and stable mild cognitive 
impairment (SMCI). The experiment was conducted on the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset, achieving classification 
accuracies of 73.95% and 86.60% for PMCI and AD, respectively, which 
outperformed other models while also identifying distinct regions in the 
temporal and parietal lobes. In another study, Yigit [2] used structural 
magnetic resonance imaging (SMRI) as input, and achieved 3D to 2D 
simplification by splitting slice data from axial, sagittal, and coronal 
dimensions. Then, they applied convolutional neural network (CNN) to 
diagnose AD and MCI on the open-access imaging studies in the aging 
series (OASIS) dataset. Their model was also tested on data from the 
Alzheimer’s Disease Minimum Interval Resonance Imaging in AD 
(MIRIAD) dataset, achieving an average accuracy of 80.0% for AD and 
MCI classification. Yu et al. [3] introduced a connectivity-weighted 
penalty to construct functional connectivity, replacing the traditional 
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l1 norm regularization. They supposed that the higher correlation of the 
BOLD signals, the stronger link between ROIs. The adaptive graph 
pooling part of our paper is inspired by this. 

In a separate study, Li et al. [4] used the group-constrained Kalman 
filter (gKF) algorithm to construct dynamic effective connectivity (dEC) 
and employed the virtual adversarial training convolutional neural 
network (VAT-CNN) to extract the local features of dEC. Finally, they 
proposed the high-order connectivity weight-guided graph attention 
networks (cwGAT) to aggregate features of dEC. The results achieved 
the classification accuracy of 90.9%, 89.8%, and 82.7% for NC vs. early 
MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI 
respectively. Although the results outperform the state-of-the-art 
methods significantly, the structural information from DTI is not uti-
lized in the work. Several studies demonstrated that the fusion of 
functional and structural information can enhance model performance 
for MCI identification [5]. 

In addition to this, Yee et al. [6] and Pan et al. [7] analyzed single- 
modal data: 18F-FDG PET. Single-modal research has achieved 
remarkable results, but in contrast, multi-modal can provide comple-
mentary information. 

Research on computer-aided diagnosis of Alzheimer’s disease has 
increasingly focused on multi-modal data analysis [8]. AD patients have 
been shown to display a marked decrease in the number of brain 
network connections and weakened interactions between brain regions 
within the network. Additionally, alterations in the small-world char-
acteristics of the brain network suggest a disruption in network integ-
rity. Functional magnetic resonance imaging (fMRI) measures changes 
in brain blood flow caused by neural activity, while diffusion tensor 
imaging (DTI) enables observation of the trajectory of nerve fiber bun-
dles. Both modalities are closely linked to AD brain lesions and have 
been extensively studied in the context of AD diagnosis. 

Li et al. [9] proposed a multi-modal hyperconnected functional 
network for MCI identification by integrating the hyperconnected net-
works of BOLD fMRI and ASL fMRI, which led to an 11.5% increase in 
classification accuracy compared to using BOLD fMRI alone. But it is a 
major limitation that the proposed method ignores the effect of DTI on 
functional network formation. Neuroscience studies have reported that 
stronger structural connections between ROIs indicate higher functional 
interactions [10]. 

Lei et al. [11] proposed a feature selection method from multi-modal 
brain networks and used support vector machines for prediction, 
resulting in a 3.76% improvement in classification accuracy compared 
to using fMRI alone. Li et al. [12] employed the hyper weighted LASSO 
algorithm to construct fMRI brain networks and incorporated DTI as a 
penalty parameter for regularization, which increased the classification 
accuracy by 5.5% when using fMRI and DTI data together. However, a 
limitation of the above two algorithms is that the impact of non-imaging 
information and the correlation between subjects are not considered. 
Wolz et al. [13] and Ktena et al. [14] highlighted that non-imaging such 
as gender, age, and the type of equipment used for data acquisition, can 
introduce heterogeneity in the extracted features, resulting in a non- 
uniform distribution and limiting the generalization ability of the 
trained models. 

Research in the field of neuroimaging has demonstrated the potential 
of deep learning-based diagnosis to improve the accuracy and efficiency 
of AD diagnosis [15,16,17,18]. One such approach was proposed by Yao 
et al. [18], who proposed a mutual multi-scale triplet graph convolu-
tional network (MMTGCN) to analyze fMRI and DTI for brain disorder 
diagnosis. First, three sets of functional and structural connectivity 
networks were generated using three different brain segmentation 
templates, respectively. And a triplet GCN (TGCN) module is proposed 
to learn the relationship between each GCN. The accuracy of NC vs. MCI 
was 86.6% and the AUC was 90.3%. But one shortcoming of the paper is 
global connectivity is ignored by using k-nearest neighbors (k-NN) to 
extract nodes. 

It can be found that there are some limitations in the existing multi- 

modal methods: (1) There is still no effective multi-modal fusion method 
[11,12,18]. (2) Some feature extraction methods ignore the relationship 
of long-distance brain regions [18]. (3) A popularly input for diagnostic 
models is the brain connectivity networks [9,11,19]. To reduce redun-
dancy, common methods focus on eliminating a certain number of 
connections, which ignores the physiological functional connections 
between brain regions. (4) The impact of non-imaging information is 
ignored [11,12]. 

Our proposed solutions aim to address the limitations identified in 
the existing literature on multi-modal methods for the computer-aided 
diagnosis of MCI:  

(1) We propose a highly effective multi-modal fusion mechanism that 
takes into account the complementary nature of fMRI and DTI 
data. We achieve feature fusion by concatenating the two mo-
dalities on a per-subject basis, followed by constructing connec-
tions between adjacency matrices to expand the receptive field of 
graph convolutional networks (GCN).  

(2) We propose the use of graph pooling algorithms to extract global 
features that have a larger receptive field compared to convolu-
tional methods. We leverage structural information between 
nodes through connection reconstruction and preserve nodes 
with greater differences within clusters by sampling.  

(3) We propose a novel feature selection algorithm based on the 
multilayer perceptrons (MLP) learning model. We remove 
redundant features while selecting higher-quality features 
through labeled learning with MLP. This approach ensures that 
the selected features are highly relevant to the MCI diagnosis.  

(4) We design a similarity fusion method that integrates non-imaging 
information into topological similarity calculation. This approach 
addresses the non-uniform distribution of features caused by non- 
imaging differences among individuals, such as gender, age, and 
sampling equipment. Our proposed solution helps to improve the 
generalization ability of the models. 

Overall, our proposed solutions aim to enhance the accuracy of MCI 
diagnosis by improving the effectiveness of multi-modal methods and 
overcoming the limitations identified in existing literature. These pro-
posed solutions could also be extended to other related applications in 
the field of neuroimaging. 

2. Method 

2.1. Algorithm overview 

The presented algorithm in this paper follows a multi-stage approach 
for optimizing feature extraction from multi-modal data and expanding 
the receptive field of graph convolutional neural networks to improve 
disease diagnosis results. Fig. 1 shows the overall flowchart of the al-
gorithm. The algorithm consists of the following steps:  

(a) Image preprocessing is performed to minimize the differences in 
image acquisition and enhance the effectiveness of subsequent 
statistical analysis.  

(b) Dual-channel feature extraction is conducted using the same 
processing for multi-modal data. Graph pooling and MLP are used 
to extract higher-level information from subgraphs, and finally, 
features from the two channels are fused. 

(c) A population graph is constructed that uses the correlations be-
tween brain imaging data and non-imaging information to extend 
the receptive field of GCN.  

(d) A diagnostic model is built using graph convolutional neural 
networks, which integrates multi-modal information and stabi-
lizes model performance while demonstrating its efficiency in an 
intuitive manner. 
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2.2. Brain image preprocessing 

DTI and fMRI are considered the most effective neuroimaging mo-
dalities for diagnosing AD and MCI. DTI can provide information on 
structural changes in the brain, while fMRI reflects spontaneous func-
tional activity, both of which are closely related to brain lesions in AD 
patients. Combining these two modalities can help to understand the 
underlying pathological mechanisms of AD, leading to better diagnosis 
and treatment for AD and MCI patients. 

In fMRI imaging, standard preprocessing steps are performed using 
specialized software such as Statistical Parametric Mapping (SPM) and 
Data Processing Assistant for Resting-State fMRI (DPARSF). Slice timing 
correction is performed first to eliminate any temporal discrepancies in 
the images. Head motion correction is then conducted by realigning the 
images, followed by normalization and smoothing to reduce noise and 
align the images to a common template. Local average time series 
regression is applied to remove noise and artifacts from the data. Finally, 
the brain is segmented into 90 regions of interest (ROIs) using the 
Automated Anatomical Labeling atlas (AAL90), and an average time 
series matrix is generated for each individual. 

In DTI imaging, specialized software such as Pipeline for Analyzing 
Brain Diffusion Images (PANDA) and FMRIB Software Library (FSL) are 
commonly used. Motion artifacts and eddy current distortion are cor-
rected by aligning diffusion-weighted images with a reference b0 image. 
The b-matrix is then reoriented, and a transformation is applied to 
calculate the diffusion tensor, which provides information on the di-
rection and magnitude of water diffusion. The eigenvalues (λ1,λ2,λ3) and 
corresponding eigenvectors are calculated, which are used to estimate 
fiber tracts in the brain. Similar to fMRI preprocessing, the brain is 
segmented into 90 ROIs, and global deterministic fiber imaging is 
generated using the default settings of the Fiber Assignment by 
Continuous Tracking (FACT) algorithm. Finally, a fiber count matrix of 
90 ROIs is obtained for each individual. 

Overall, the combined use of DTI and fMRI allows for a compre-
hensive understanding of the pathological mechanisms of AD and MCI, 
which can lead to improved diagnosis and treatment for these condi-
tions. The use of specialized software and preprocessing techniques 
enables the extraction of meaningful information from the raw imaging 
data. 

2.3. Dual-channel feature extraction 

Given the intricate nature of neuroimaging images and the 

complementary relationship between functional magnetic resonance 
imaging (fMRI) and diffusion tensor imaging (DTI), the present study 
employed an adaptive graph pooling method to extract deep features 
from the connectivity matrices of the two modalities, as obtained in 
Section 2.2. These deep features were subsequently fused, as illustrated 
in Fig. 1(b), leading to an effective feature extraction method that 
improved diagnostic accuracy to some extent. 

2.3.1. Adaptive graph pooling 
The proposed approach involves selecting key subgraphs of the brain 

network for each subject individually. Specifically, an unsupervised 
graph pooling method is first utilized to downsample the brain image 
into a sparse matrix. Subsequently, a MLP is trained using the sparse 
feature matrix and labels to extract high-order features for further pro-
cessing. Fig. 2 illustrates the adaptive graph pooling method, which 
consists of a hierarchical graph pooling module with structure learning 
(HGP-SL) and an MLP module capable of learning complex data 
representations. 

HGP-SL can be broken down into two main steps, as shown in Fig. 2 
(b) and Fig. 2(c). The first step involves selecting nodes to minimize the 
loss of graph information. This is achieved by computing an information 
score, represented by the L1 norm of the Manhattan distance between 
the features of a node and its neighbors. The nodes are then sorted ac-
cording to their information scores and the user-defined pooling rate. 

The second step involves using an unsupervised edge prediction al-
gorithm to connect isolated subgraphs and partially correct initial brain 
region connections caused by node selection. This step is crucial in 
ensuring that the information lost during node selection is partially 
recovered through the addition of edges between subgraphs. By incor-
porating both node and edge information, the adaptive graph pooling 
method enables the extraction of deep features from the brain network 
for subsequent analysis. 

2.3.1.1. Select subgraph nodes. In the adaptive graph pooling process, 
the information score S for each node is determined by combining its 
features with those of its neighbors and computing the L1 norm of the 
distance between these two components. These scores are then sorted, 
and a subset of nodes with a user-defined pooling rate and corre-
sponding adjacency matrices for subgraphs are selected based on the 
highest information scores. 

S = γ(g) = ‖
(

I −
(
D(l) )− 1A(l)

)
H(l)‖1 (1) 

In Formula (1), I is the identity matrix, A(l) and H(l) respectively the 

Fig. 1. Overall algorithm flow chart.  
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adjacency matrix and node feature matrix for the l-th layer. D(l) is a 
diagonal degree matrix. Vector S contains the calculated scores for each 
node. Based on these information scores, nodes within the top-K range 
are selected in order. 

To determine a node’s information score, this method calculates the 
difference between the node’s features and the average features of its 
neighboring nodes. The larger this difference, the higher the information 
score assigned to the node, which indicates a lower likelihood of being 
removed during node selection. This approach ensures that nodes with 
unique features and important connections are more likely to be 
retained, which contributes to the preservation of essential graph 
information. 

2.3.1.2. Structure learning. To address the potential issue of isolated 
subgraphs and the limitations of the initial brain graph structure in the 
node selection method, this paper employed an adaptive approach to 
preserve the coherence of subgraphs and predict possible connections 
between the selected nodes: 

Firstly, an unsupervised edge prediction algorithm is utilized to 
connect the isolated subgraphs and enhance the initial brain region 
connections. Then, the obtained subgraphs are combined into a hierar-
chical graph structure, and a structure learning method is applied to 
adaptively learn the connections between subgraphs. This process al-
lows the model to explore and learn new connections beyond the initial 
brain graph structure and improve the overall representation of the 
brain network. 

E(l)(p, q) =
H(l)(p, : )⋅H(l)(q, : )

‖H(l)(p, : )‖‖H(l)(q, : )‖
+A(l)(p, q) (2) 

Here, E(l)(p, q) is the required similarity between the two nodes, p and 
q, H(l) is the node feature matrix in the previous section. The adjacency 
matrix A(l)(p, q) is also included in computing cosine similarity to 
enhance the strength of connections between nodes. Then, a sparse 
attention mechanism is used to normalize the similarity scores. 

Sim(l)(p, : ) := argmin
n∈ΔK− 1

‖n − E(l)(p, : )‖2 (3)  

whereΔK− 1 =
{

n ∈ RK
⃒
⃒1T n = 1, n ≥ 0

}
(4) 

Here, the simplex ΔK− 1 is a K-1 dimensions probability simplex that 
corresponds to K, the number of nodes in the brain graph. For each node 
p, the softmax function is used to normalize the similarity scores be-
tween it and other nodes, resulting in a probability distribution ΔK− 1. 
However, after the process of normalization, small non-zero values may 
be preserved, increasing the complexity of down-sampling subgraphs. 
So, this paper projected target vectors onto the ΔK− 1 simplex and ach-
ieved sparsity upon reaching boundaries. Specifically, it updated adja-
cency matrices to their optimal values for this quadratic-constrained 
optimization problem: 

A(l+1)(p, q) =
[
E(l)(p, q) − τ

(
E(l)(p : )

) ]

+
(5)  

τ(n) =
( ∑

j ∈ Q(n)nj
)
− 1

|Q(n) |
(6)  

whereQ(n) =
{

j ∈ [K]
⃒
⃒nj > 0

}
(7) 

Here,[K] = {1,⋯,K}, [t]+ := max{0, t} To maintain the sparsity of 
A(l+1)(p, q), any values in the matrix that are lower than the threshold τ(⋅) 
are set to 0. 

In this study, the graph pooling operations are conducted on an in-
dividual basis, and the outcomes are saved as sparse vectors. This 
approach enables the downsampling of brain imaging into a compact set 
of essential features while simultaneously preserving high-performance 
standards in terms of storage and computational requirements. More-
over, this technique retains a greater amount of information in the 
feature matrix than previous methodologies. 

2.3.2. Feature fusion 
After pooling features from both fMRI and DTI modalities, the 

resulting sparse feature matrices ’featureF’ and ’featureS’ have the same 
dimensions. In this paper, a fusion algorithm similar to feature concat-
enation is proposed to effectively enhance brain imaging feature 
expression for each subject. Fig. 3 illustrates the schematic diagram of 
the proposed multi-modal feature fusion. The functional sparse feature 
matrix ’featureF’ and structural sparse feature matrix ’featureS’ are 
concatenated to represent each subject’s features. 

The “concat” operation used in this article is not simply a concate-
nation of the feature matrices, but a way to expand the information of 
the brain images. This method is based on subject-wise concatenation, 
meaning that the features of each subject are concatenated together. For 
instance, in Fig. 3, the features of Subject 1 are represented by the joint 
sparse feature matrices “feature F

1″ and ”feature S
1″. The resulting fused 

feature matrix Xfs is then used as input for the graph convolutional 
network. 

As shown in Table 1, the network structure of dual-channel feature 
extraction is depicted. In the HGP-SL block, HGP-SL are identical and 
consist of two parts: Select subgraph nodes and Structure learning. After 

Fig. 2. Adaptive graph pooling feature extraction.  

Fig. 3. Multi-modal feature fusion.  
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HGP-SL, new graph is represented using “Global_mean_pool and Glob-
al_max_pool” operations. The MLP block is composed of two fully con-
nected layers and is responsible for fusing fMRI and DTI data by 
“Concat”. 

2.4. Personalized population graph 

In the context of disease diagnosis, graph-based methods typically 
focus only on pairwise similarity between subjects, relying on their 
specific imaging feature vectors, rather than modeling relationships 
between subjects. To address this limitation, this paper constructs a 
population graph based on individual-level data [20], as shown in Fig. 4. 
In this graph, the nodes represent individual subjects, while the edge 
weights represent the correlations between the subjects. This represen-
tation allows for the integration of rich imaging and non-imaging in-
formation in diagnostic tasks. 

To construct the population graph, the preprocessed data from Sec-
tion 2.2 is used to calculate imaging similarity using a Gaussian kernel 
function (Formula (9)) and non-imaging similarity using cosine simi-
larity. The Hadamard product of the two similarity matrices is then 

computed to obtain the adjacency matrix. Additionally, the fMRI and 
DTI adjacency matrices are fused to expand the receptive field of the 
graph convolutional network (GCN), which is beneficial for better 
feature extraction. 

2.4.1. Graph kernel similarity 
The definition of graph edges is a critical step in capturing the un-

derlying structures in data and interpreting the similarities between 
feature vectors. This paper employs a graph kernel to directly measure 
the topological similarity between time series, which preserves the 
structural information while computing similarity [21]. The use of a 
Gaussian kernel function is proposed to calculate similarity, which is 
given as: 

κ
(
ri

a, r
i
b

)
= exp

(

−
‖ri

a − ri
b‖

2σ

)

(8) 

This article suggests that indicators calculated by subjects in the 
same category are more similar, while those from different classes are 
dissimilar. A threshold T (hyperparameter) is set as a boundary to 
remove redundancy and better observe substantial similarity. When the 
similarity is less than T, set κ

(
ri
a, ri

b

)
to 1; otherwise, it is set to 0. 

The final formula for calculating the Gaussian kernel similarity of a 
population network is as follows: 

Sk
(
Ni,Nj

)
=

∑M
a=1

∑M
b=1wi

awj
bκ
(
xi

a, xj
b

)

∑ni
Mwi

a
∑M

b=1wj
b

(9) 

In formula (9), the Gaussian kernel function κ
(

xi
a, x

j
b

)
represents the 

Gaussian distance between different brain regions of diverse individuals, 
where xi

a =
∑M

u Âi(a, u) represents the local topology of subject a, and 
wi

a = 1∑M
u=1

κ(xi
a ,xi

u)
is the Gaussian distance between all brain regions of 

person i. 

2.4.2. Phenotypic information similarity 
Using cosine similarity to calculate phenotypic similarity: 

Sim(i, j) =
⃒
⃒
⃒
⃒

Mi⋅Mj

‖Mi‖‖Mj‖

⃒
⃒
⃒
⃒ (10)  

ST(i, j) =
{

1, ifSim(i, j) > 0.5
0, otherwise (11) 

For the obtained similarity matrix, a filtering process can be per-
formed by setting a threshold of 0.5 to retain connections between 
subjects with similarities. Combined with formula (9) and formula (11), 
the adjacency matrices AF and AS describing the correlation in fMRI and 
DTI can be obtained, “∘” represents the Hadamard product of two ad-
jacency matrices: 

AF = SF
k ◦SF

T  

AS = SS
k◦SS

T (12)  

2.4.3. Receptive field fusion 
To construct the population graph Acomb, in addition to calculating 

the similarity, it is also necessary to realize the fusion of the adjacency 
matrices (AF and AS) of the two modalities. 

In this paper, three receptive fields are designed. The receptive field 
1 is AF calculated from the fMRI data in the training set according to the 
formula (12), and the edge weight is the element in AF. The receptive 
field 2 is the AS calculated by the DTI data in the training set according 
to the formula (12), and the edge weight is also the element in AS. 
Receptive field 3 is the connection between the test and the train, and 
the edge weight is 1, which ensures that new nodes can be replaced 
during testing. As shown in Fig. 5, the number of subjects in the training 
set is m, the number in the test set is n-m, and the matrix dimensions (n 

Table 1 
The network structure of dual-channel feature extraction.   

Type Input size Output size 

HGP-SL block Relu 590,90 590,90 
Global_mean_pool 590,90 590,90 
Global_max_pool 590,90 590,90 
Concat pool 590,90 590,180  

HGP-SL block Relu 118,90 118,90 
Global_mean_pool 118,90 118,90 
Global_max_pool 118,90 118,90 
Concat pool 118,90 118,180  
Sum Concat 118,180 118,180  
Block output / 118,180  

MLP block Liner 118,180 118,128 
Relu 118,128 118,128 
Dropout 118,128 118,128 
Liner 118,128 118,64 
Relu 118,64 118,64 
Dropout 118,64 118,64 
Concat 118,64 118,128 
Block output / 118,128  

Fig. 4. Diagram of the adjacency matrix.  
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× n) of the three receptive fields are the same. Because it is a symmetric 
matrix, only the upper triangular data of the matrix should be consid-
ered. The final Acomb can be obtained by summing the three matrices. 

2.5. Graph convolution network 

In this article, a two-layer graph convolutional network (GCN) was 
implemented, which consists of two different layers. The first layer is the 
GCN layer, while the second layer uses a variant of GCN called Cluster- 
GCN [23] to accelerate ordinary GCN blocks. The structure of the GCN in 
this article is illustrated in Fig. 6. 

Cluster-GCN proposed by Chiang et al. [23] reduced computational 
costs by clustering nodes. During the backpropagation phase, the model 
only needs to calculate gradients for the minimum subset. 

1
|B|

∑

i∈B
∇loss

(
yi, zL

i

)
(13) 

Among them, B represents the subset of nodes, yi is the correct label, 
and zL

i is the predicted label. The loss function is defined as follows: 

loss
(
yi, z

L
i

)
= -

[
yilog

(
zL

i

)
+(1-yi)log

(
1-zL

i

) ]
(14) 

To add on, the Cluster-GCN algorithm is able to improve scalability 
and reduce computation cost for large graphs, making it a suitable 
choice for processing brain imaging data with a large number of sub-
jects. By partitioning the graph into smaller subgraphs, the algorithm 
reduces the number of nodes and edges that need to be processed at 
once, allowing for more efficient computation. The use of Cluster-GCN 
in this paper enables the processing of large-scale brain imaging data, 
which is essential for accurate disease diagnosis and prediction. 

Considering the imbalance of positive and negative samples in this 
paper, we introduced a balance factor αi in the loss function [24]. For 
label 1, introduce weight α, and for label 0, introduce weight 1 − α. 

αi =

{
α, if yi = 1

1 − α, otherwise (15) 

Table 2 depicts the module parameters of GCN. When training the 
GCN model, the test data is NAN, and the probability of MCI for all 
training data will be output. According to the characteristics of the 
output data, when the output is greater than 0, the label is 1, which 
means MCI state, otherwise is the NC state. Similarly, when testing the 
model, the labels of the test in the population graph will be output. 

3. Experiments and results 

3.1. Experimental environmental parameters 

The present study was conducted within a Linux system environment 
that utilized MATLAB2017b software and an Intel(R) Core(TM) i7- 
10700F CPU @ 2.90 GHz, in conjunction with 128 GB memory. The 
algorithm program was implemented through Python 3.7 and the 
PyTorch deep learning framework, which offered a high-performance 

Fig. 5. Similarity receptive field.  

Fig. 6. Graph convolution network in this paper.  

Table 2 
The network structure of GCN.  

Block Type Input size Output size 

GCN block GCNConv 118,128 118,64 
Cluster 
-GCNConv 

118,64 118,1 

Block output / 118,1  
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platform for constructing convolutional neural networks and leveraging 
GPU parallel computing to expedite the training process. 

The primary neural network utilized in this study is a graph con-
volutional neural network, which is well-suited to handling graph- 
structured data. The training parameters for this network were estab-
lished based on previous experience and a series of iterative experi-
ments, as detailed in Table 3. By carefully selecting these parameters, 
the network was optimized for optimal performance in the context of the 
present study. 

3.2. Data sets 

In this paper, the primary dataset utilized is the open-source Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database, which was 
previously employed in a study by Song [19]. The ADNI database was 
created as a collaborative effort between academic and private re-
searchers, and includes data from over 1,700 adult participants 
recruited from more than 50 locations across the United States and 
Canada for three separate studies (ADNI-1, ADNI-GO, and ADNI-2). The 
present study employed 118 sets of functional magnetic resonance im-
aging (fMRI) and diffusion tensor imaging (DTI) data from the ADNI 
database, which encompassed samples of MCI and NC, for both training 
and testing. Additionally, non-imaging information such as gender, age, 
and equipment type were incorporated into the analysis. Further details 
regarding the characteristics of the dataset are provided in Table 4. By 
utilizing this comprehensive and well-established dataset, the present 
study is able to draw upon a wealth of high-quality data to investigate 
the research questions at hand. 

In this study, all voxels of brain structures were utilized that were 
obtained using a segmentation criterion of C = 138. The inclusion of all 
brain structure voxels is particularly effective in predicting AD, as 
changes in brain structure are a hallmark of the disease and result in 
differences in brain structure voxels between healthy individuals, those 
with MCI, and those with AD. By incorporating these voxels into the 
analysis, the present study is able to leverage the full richness of the 
neuroimaging data to better characterize the differences between these 
populations and ultimately improve predictive accuracy. The use of this 
comprehensive approach to voxel selection represents a novel contri-
bution to the field and has the potential to yield important insights into 
the underlying mechanisms of AD. 

3.3. Training and verification of the model 

The training process of the proposed model is evaluated using a loss 
curve, as shown in Fig. 7. The curve demonstrates a gradual reduction in 
the loss value during training, indicating a gradual improvement in the 
model’s learning ability. To ensure the reliability of the results, the ADNI 
dataset was divided into ten parts using a 10-fold cross-validation 
method, with each part serving as a test set while the remaining nine 
parts were used for training. Since the ADNI dataset consists of 118 
samples, each experiment had a training set size of 106 and a test set size 
of 12. The average Accuracy and AUC values for the ten experiments 
were then calculated to obtain final evaluation metrics. This approach 
allows for a more comprehensive evaluation of the model’s perfor-
mance, providing a more reliable indication of its classification ability. 

The receiver operating characteristic (ROC) curve is a widely used 
tool for visualizing the performance of binary classification models at 
various decision thresholds. The area under the ROC curve (AUC) is a 
commonly used metric to evaluate the predictive performance of a 
model, with higher AUC values indicating better performance. In this 
study, Fig. 8(a) presents the ROC curve for our model, which achieved 
an AUC value of 0.97, indicating its high accuracy and good predictive 
ability for MCI detection. 

The present study evaluated the performance of the proposed model 
by analyzing its confusion matrix, which provides a comprehensive view 
of the classification results. The confusion matrix, shown in Fig. 8(b), 
reveals the model’s ability to accurately classify MCI patients and 
normal individuals. The false positive rate (FPR) indicates the likelihood 
of misclassifying a normal individual as an MCI patient, while the true 
positive rate (TPR) reflects the proportion of actual MCI patients 
correctly identified as such by the model. In this experiment, the FPR 
was found to be 0.056, indicating a relatively low probability of 
misclassification, while the TPR was 0.91, indicating that the model 
accurately identified a large proportion of MCI patients. The false 
negative rate (FNR) represents the proportion of actual MCI patients 
who were incorrectly classified, and the true negative rate (TNR) rep-
resents the proportion of actual normal individuals who were correctly 
classified as such by the model. In this experiment, the FNR was 0.095, 
suggesting that a small proportion of MCI patients were misclassified, 
while the TNR was 0.94, indicating a high accuracy in correctly iden-
tifying normal individuals. Overall, these results suggest that the pro-
posed model has good classification performance for MCI detection. 

3.4. Validation of the training parameters 

To solve the problem of imbalanced positive and negative samples in 
the data set, we introduced a balance factor to bias the model towards 
the minority class. Additionally, we introduced Sensitivity (%) and 
Specificity (%) as evaluation indicators to understand the performance 
of the model. We selected the optimal parameters through ablation ex-
periments, and the experimental results are presented in Table 5. 

Table 3 
Training parameter setting.  

Hyperparameter Value 

epoch 100,000 
patience 5000 
batch_size 128 
Dropout 0.01 
learning rate 0.001 
pooling_ratio 0.05 
balance factor 0.3  

Table 4 
Detailed information about the used dataset.  

Category NC(37) MCI(81) 

Female/Male 15/22 45/36 
Age (average) 75.4 75.2 
GE/SIEMENS/PHILIPS 17/18/2 25/51/5  

Fig. 7. Loss curve of model training.  
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From Table 5, we can observe that when the balance factor is set to 
0.1 and 0.2, the true negative rate (Specificity) is significantly higher 
than the true positive rate (Sensitivity). This indicates that the model is 
overly biased towards the minority class. In contrast, when the balance 
factor is set to 0.4, the model does not exhibit a preference for the mi-
nority class. Overall, the experimental results when the balance factor is 
set to 0.3 are more balanced. 

The pooling_ratio refers to retaining the top pooling_ratio% nodes in 
each sub-graph. As shown in Fig. 9, when we set pooling_ratio as 0.05, in 
the overall 10-fold experiment, the performance is relatively stable and 
the average accuracy is the highest, indicating that the sparse features 
extracted by this pooling_ratio have typical characteristics and can 
effectively represent information. 

3.5. Validation of the model and multi-modal data 

Table 6 highlights the significant improvement in diagnostic accu-
racy achieved by utilizing GCN compared to traditional machine 
learning algorithms, including MLP, RF, and SVM. The results demon-
strate that the average Accuracy for the GCN model increased by 3.39%, 
3.54%, and 3.55% for fMRI, DTI, and fMRI + DTI, respectively. Addi-
tionally, the average Sensitivity increased by 14.18%, 7.68%, and 
4.09%, while the average specificity decreased by − 5.43%, − 0.38%, 
and increased by 4.53%. These findings indicate that incorporating in-
formation from different modalities can provide complementary insights 
into brain function and structure, resulting in more accurate diagnoses. 

Table 6 presents the comparison between the proposed DFCGCN 
model and other machine learning algorithms, including GCN, MLP, RF, 
and SVM. The results show that the DFCGCN model outperforms GCN in 
terms of diagnostic accuracy, sensitivity, and specificity. For example, 
on fMRI data, the DFCGCN model achieved an average accuracy 
improvement of 7.57%, compared to GCN. The model also showed 
improved performance when incorporating multiple modalities, with an 

average accuracy improvement of 16.23% on fMRI + DTI data. 
Furthermore, the DFCGCN model also outperformed traditional ma-
chine learning algorithms such as MLP, RF, and SVM. The comparison 
results suggest that multi-modal data can provide complementary in-
formation to improve diagnostic accuracy, and the proposed DFCGCN 
model, with its dual-fusion method and perception receptive fields, is 
effective in integrating information from different modalities. 

Table 7 compares the performance of the proposed DFCGCN method 
with other state-of-the-art algorithms on fMRI + DTI multi-modal data. 
The results demonstrate that the DFCGCN method achieves comparable 
or better performance than other state-of-the-art methods in terms of 
Accuracy, Sensitivity, Specificity, AUC, and other evaluation metrics. 
The proposed method achieves an Accuracy of 90.47%, Sensitivity of 
89.17%, Specificity of 91.76%, and AUC of 0.97, which are highly 
competitive compared to other methods. By comparison, we conclude 
that the proposed DFCGCN model can effectively integrate comple-
mentary information between fMRI and DTI, enhance inter-subject 
correlation, and achieve better feature extraction performance. These 
results further confirm the effectiveness and robustness of the proposed 
DFCGCN method in the diagnosis of MCI using multi-modal neuro-
imaging data. 

3.6. Validation of adaptive graph pooling 

The proposed method uses adaptive graph pooling method to extract 
the deep features from the brain network for subsequent analysis. In the 
experiment, our method is compared with another state-of-the-art 
pooling algorithm, which combines connectivity matrices with the 
RFE (Recursive Feature Elimination) dimensionality reduction strategy, 
with a more detailed feature extraction algorithm. The results, depicted 
in Fig. 10, show that the proposed feature extraction algorithm out-
performs the connectivity matrics + RFE algorithm in terms of Accuracy, 
regardless of whether single-modal or multi-modal data are used. The 
connectivity matrices + RFE algorithm may neglect regional brain ac-
tivity details, and it maps two vectors to floating-point values between 
− 1 and 1, resulting in a loss of more structural information within the 
image. In comparison, the proposed algorithm directly extracts features 
from the entire graph structure and observes the activity between brain 
regions in subjects, preserving more spatial information and enabling a 
more comprehensive understanding of brain function and structure, 
which results in improved accuracy in diagnosis or classification tasks. 

Fig. 8. ROC curve and Confusion matrix.  

Table 5 
Effect of different balance factors.  

Balance factor Sensitivity(%) Specificity(%) 

0.1 
0.2 
0.3 
0.4 

69.3 
78.0 
91.1 
96.8 

97.5 
93.3 
94.0 
85.0  
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3.7. Validation of graph kernel and non-imaging information 

The Gaussian kernel function plays a fundamental role in measuring 
the “similarity” between samples and projecting them into a space that 
captures this similarity. Specifically, the Gaussian kernel function is 
capable of clustering similar samples effectively, and it can transform 
linearly inseparable data into linearly separable data. 

Fig. 11 presents the population graph that is constructed using the 
Gaussian kernel function and non-imaging information. Although the 
fMRI illustration is somewhat unclear, the images of DTI and fMRI + DTI 
reveal conspicuous clustering characteristics. Notably, participants with 

similar features in the graph exhibit strong clustering effects before 
conducting graph convolution operations, which demonstrates the ef-
ficacy of constructing graphs using Gaussian kernels and non-imaging 
information. 

The findings presented in Fig. 12 indicate that across the three mo-
dalities of fMRI, DTI, and fMRI + DTI, the application of non-imaging +
graph kernel methods consistently results in higher Accuracy and 
Sensitivity than using only graph kernels or only non-imaging infor-
mation algorithms. Notably, multi-modal data consistently achieved 
higher Accuracy than single-modality data. Furthermore, the non-im-
aging + graph kernel method showed the highest Specificity in the 
single-modality fMRI setting. 

The study results revealed that the combination of graph kernels and 
non-imaging information significantly enhanced the performance. This 
finding highlights the complementary roles of these two methods in 
accurately characterizing population graph. 

4. Conclusion 

This paper presents an efficient feature extraction algorithm using 
graph convolutional networks, achieving an accuracy of 90.7% and 
outperforming similar algorithms. The proposed algorithm is validated 
through comparative experiments, demonstrating its superiority in 
preserving spatial features in multi-modal data that consider the brain’s 
functional and structural connectivity between regions. By utilizing 
graph pooling operations and clustering sparse features, the algorithm 

Fig. 9. Effect of different pooling_ratio.  

Table 6 
Diagnosis performance of different methods for NC vs. MCI.  

Data 
Modality 

Algorithm Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

fMRI MLP  64.18  63.57  63.98 
RF[25]  67.10  56.40  77.27 
SVM[26]  67.14  63.39  69.32 
GCN[20]  70.07  75.30  64.76 
CGCN(Ours)  74.69  62.13  94.88  

DTI MLP  71.81  67.34  76.14  
RF[25]  71.24  72.07  70.45 
SVM[26]  70.63  71.89  69.31 
GCN[20]  74.77  78.11  71.59 
CGCN(Ours)  79.62  78.05  88.13  

fMRI + DTI MLP  73.60  72.07  75.00 
RF[25]  74.77  75.66  73.86 
SVM[26]  72.38  74.34  70.19 
GCN[20]  77.13  78.11  77.55 
DFCGCN 
(Ours)  

90.70  91.10  94.07  

Table 7 
Algorithm comparison with the related works.  

Author Accuracy(%) Sensitivity(%) Specificity(%) 

Lei et al.(2020)[11]  86.5  85.3  87.5 
Li et al. (2020)[12]  87.7  88.9  86.5 
Yao et al (2021)[18]  86.6  –  – 
Song et al. (2021)[19]  87.1  90.2  84.1 
Zhou et al.(2022)[27]  89.4  93.8  84.9 
Lei et al.(2023)[5]  89.44  90.3  88.46 
Ours  90.7  91.10  94.07  

Fig. 10. Comparison of adaptive graph pooling and connectivity matrices 
plus RFE. 
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maintains performance superiority compared to conventional methods. 
The population graph calculation using graph kernels can effectively 
represent individual correlations. Thus, the proposed multi-modal graph 
convolutional algorithm thoroughly explores the brain’s connectivity 
characteristics and avoids the complex construction of a brain connec-
tion network, making it highly applicable in other diagnostic tasks. 
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